Easy Park Group 26

Motivation

- For years on end, students and faculty complain about on campus parking.
- To alleviate the stress of parking during peak times.
- To reduce the amount of time to find parking.
- To relieve traffic congestion around campus.

Goals & Objectives

- Implement the use of sensors, or a deep learning algorithm, to detect occupied parking spaces.
- Retrieve the data from the low-powered microcontroller back to a server of any parking space(s) available.
- Design a system that is low cost and low-powered.
- App capability for monitoring parking occupancy in real time.
- Energy harvesting without using power provided by UCF.
- Low maintenance frequency.

Specifications and Requirements

Disk Radius < 8 cm

Thickness < 3 cm

Power Dissipated Max < 0.5W

App update rate <= 5 sec

Durability > 1000 lbs

Sensing Range > 60 cm

Weight < 5 lb

Main Block Diagram

^{*}The WiFi module has a built-in MCU that would be utilized instead of the ATMega.

Power Management Components

^{*}The WiFi module has a built-in MCU that would be utilized instead of the ATMega.

Power Module Components

Monocrystalline 1W Solar Panel
Mtr. Seeed Studio

Solar Panel Selection

FEATURES

Dimension: $100x80x2.5(\pm0.2)$ mm

Efficiency: 15.5%

Typical peak power: 0.935W

Typical voltage: 5.5V

Typical current: 170mA

Open-circuit voltage: 8.2V

Maximum load voltage: 6.4V

Weight: 33g

This plot illustrates the PV curve testing the 1W panel with a range of resistor loads from 19.1 ohms to 102.4 ohms.

We found the maximum power point around (5.3818V, 142mA) using a 37.9 ohm, 2W load resistor.

Battery Selection

EBL 840 9V Li-ion

- Rated capacity: 600 mAh
- Estimated battery life: ~5 hours
- Protection provided
- Cost: ~\$4.75 each

<u>Ipower IP 9V Lithium Polymer (LiCoO2)</u>

- Rated capacity: 700 mAh
- Estimated battery life: ~5.5 hours
- Protection provided
- Cost: ~\$19.95 each

HC-SR04 Ultrasonic Module

Features	Specifications
Operating Voltage	5VDC
Operating Current	15mA
Effectual Angle	<15°
Measuring Angle	30°
Min-Max Range	2cm-4m
Dimension	45mm x 20mm x 15mm

MPPT Selection

LT 3652-Solar Buddy

- Input Solar Panel Voltage: 6V 20V
- Battery Potential Charge Rate: 2A
- Power Efficiency: 80%
- Battery Charge Range: 4.95V 32V

Main PCB with Wifi

(Schematic & PCB Layout)

Mesh Network PCBs

(Schematic & PCB Layout)

LED

5050-G3500 SMD LED

• Input Forward Voltage: 3.2V - 3.4V

• Viewing Angle: 120 Degrees

• Input Current: 20 mA

• Lumens: 11

• Visible Frequency: 45 Hz

Regulator Chips

TLV62568DBVR

- Input Voltage: 2.5V 5.5V
- Output Voltage: 0.6 to Input
- Efficiency: Up to 95%
- Overcurrent Protection
- Soft Start Current

TPS560200DBVR

- Input Voltage: 4.5V 17V
- Output Voltage: 0.8V to

6.5V

- Efficiency: Up to 90%
- 500mA Current
- Soft Start Time: 2ms

TPS562200DDCR

- Input Voltage: 4.5V 17V
- Output Voltage: 0.76V to 7V
- Efficiency: Up to 95%
- Advanced Eco at low loads
- Soft Start time: 1ms

Mesh Network Components

^{*}The WiFi module has a built-in MCU that would be utilized instead of the ATMega.

Mesh Network Components Comparison

	Zigbee	Bluetooth LE
Current Consumption	~200mA	8.5mA
Range	291m	77m
Transmit Power	100mW	10mW
Network Type	LAN	PAN

ZigBee

Advantages

- Easy to setup mesh network
- Longer Range

<u>Disadvantages</u>

- Higher cost
- High latency

Bluetooth LE

Advantages

- Lower Cost
- More control/ flexibility

Disadvantages

Shorter Range

HM-10 BLE (Bluetooth Module)

Features	Specifications
Range	100m (open space)
Working Temperature	-5 ~ 65 C
Power (Active Mode)	8.5mA
Input Voltage/Power	+3.3VDC/ 50mA
Power (Sleep Mode)	400uA~1.5mA
Chipset	TI CC2541

ESP8266 WiFi Module

- Good arduino and community support.
- Somewhat easy to program
- Powerful built-in MCU
- Has quite a few digital pins

Huzzah ESP - 12F

MCU: ATMega328P

- Multiple digital I/O pins.
- Low power module (especially in deep sleep mode).
- Great arduino library support and sketches.
- Easy to program with other modules.

How we programmed the mesh network?

Hardware Serial

- Programmed through AT commands at the serial input stream.
- Usually to test each ultrasonic or bluetooth module.
- Command is executed directly with the module.

Software Serial

- Programmed through AT commands, but written in code.
- To make the mesh network possible after hardware serial testing is a success.
- Code is stored and flashed at the MCU.

```
void setup() {
   Serial.begin(9600);
   BTSerial.begin(9600); // default baud rate
   while(!Serial); |
   Serial.println("AT commands: ");
   delay(1000);
   BTSerial.write("AT");
   delay(500);
   BTSerial.write("AT+IMME1");
   delay(500);
   BTSerial.write("AT+ROLE1");
   delay(1500);
   BTSerial.write("AT+CON3CA308966811");
   delay(5000);
   BTSerial.write("AT+CON3CA308966811");
   delay(5000);
   BTSerial.write("AT");
```

How we programmed the mesh network?

- Ultrasonic sensors detect the difference in distance through sound waves.
- That event then triggers BLE communication.
- BLE modules talk one another by connecting to each others MAC addresses.
- Data is relayed in a series connection, i.e. $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$, etc.
- If 'A' is sending to 'B', then 'A' has to be Master to send, and 'B' has to be slave to receive the data.

Software Engineering Components

^{*}The WiFi module has a built-in MCU that would be utilized instead of the ATMega.

Web Server

- Using a free web hosting domain.
- Specifics are www.000webhost.com
- Web Page shown below (to view the database, written in PHP).
- Arduino communicates with the web server.

Easy Park

First Floor Parking Spots

ParkingSpot 1	ParkingSpot 2	ParkingSpot 3	ParkingSpot 4
Occupied	Occupied	Occupied	Vacant

Database

- Amazon relational database
- Storage capacity ~ 20GB
- Enough to cover all parking garages at UCF.
- Web server communicates with the database, written in PHP code.

Mobile App

Android Studio

Advantages

- Strong Platform
- More powerful

<u>Disadvantages</u>

Android only

JQueryMobile

Advantages

- Cross Platform
- Better for mobile applications
- Easy to use/develop

<u>Disadvantages</u>

Limited capabilities

Bootstrap

Advantages

- Better for web applications
- Easy to use/develop

<u>Disadvantages</u>

Not good for Mobile applications

Mobile App

Design Goals

- Keeps eye off app as much as possible
- Easy to use
- Quick to use

Key Features

- Colored progress bar
- Bookmark
- Map

Administration

Task Breakdown

	Jayson	Lorenzo	Muhammad	Peter
Wireless Communication			X	Х
Power Systems	X	X		
PCB Design	X	X		
Mobile App			X	Х
Server/Database			X	

Percent Completion

Budget

	Quantity	Unit Price	Cost
AMS117-5 Voltage Regulator	10	0.81	8.10
AMS117-3.3 Voltage Regulator	5	1.80	9.00
Arduino Nano	8	3.88	31.04
ATMega823p	10	3.00	30.00
Barrel Jacks Adapters and connectors	10	0.67	6.70
Breadboard	6	3.33	19.98
ESP8266	3	4.10	12.30
Green LEDs	12	0.49	5.88
HC-SR04	10	1.70	17.00
HM-10	4	10.00	40.00
Jumper Cables	120	0.05	6.00
Solar Buddy (MPPT)	1	24.95	24.95
Solar Panels (.5W)	3	1.95	5.85
Solar Panels (1W)	5	3.95	19.75
Total Cost			236.55
Cost to Manufacture			~40.00

Successes and Difficulties

Successes:

- Able to program the new WiFi and use its MCU.
- Built an in-house working Bluetooth Mesh Network.
- All schematic designs finished.

Difficulties:

- Implementation and finding parts (EE).
- Learning curve for programming an Android app.
- Uploading sketches to ATMega328P-PU without an UNO.

And so forth...

- Build Android app
- Redo MPPT design
- Fix PCB errors
- Perform additional testing on PCB in an ideal testing environment

Demo

Questions?